Senin, 29 September 2014

Arsitektur Komputer Von Neumann



Arsitektur Von Neumann menggambarkan komputer dengan empat bagian utama: CPU (Central Processing Unit) terdiri dari blok ALU (Aritmathic Logic Unit) dan unit control, memori, alat masukan (output) dan keluaran (input). Bagian ini dihubungkan oleh berkas kawat, “bus”
KONSEP KOMPUTER VON NEUMANN
John Von Neumann merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori
KOMPONEN ARSITEKTUR VON NEUMANN
1. Memori
Memori menyimpan berbagai bentuk informasi sebagai angka biner. Informasi yang belum berbentuk biner akan dipecahkan (encoded) dengan sejumlah instruksi yang mengubahnya menjadi sebuah angka atau urutan angka-angka. Sebagai contoh: Huruf F disimpan sebagai angka desimal 70 (atau angka biner ) menggunakan salah satu metode pemecahan. Instruksi yang lebih kompleks bisa digunakan untuk menyimpan gambar, suara, video, dan berbagai macam informasi. Informasi yang bisa disimpan dalam satu sell dinamakan sebuah byte.
2.  PROCESSOR (CPU)
Central Processing Unit atau Unit Pemproses Pusat atau CPU berperanan untuk memproses arahan, melaksanakan pengiraan dan menguruskan laluan informasi menerusi system komputer. Unit atau peranti pemprosesan juga akan berkomunikasi dengan peranti input , output dan storan bagi melaksanakan arahan-arahan berkaitan. CPU terdiri dari
a. ARITHMETIC AND LOGIC UNIT (ALU)
ALU berfungsi untuk melakukan operasi hitungan aritmatika dan logika. Contoh operasi aritmatika adalah operasi penjumlahan dan pengurangan, sedangkan contoh operasi logika adalah logika AND dan OR. tugas utama dari ALU (Arithmetic And Logic Unit)adalah melakukan semua perhitungan aritmatika atau matematika yang terjadi sesuai dengan instruksi program. ALU melakukan operasi aritmatika yang lainnya. Seperti pengurangan, pengurangan, dan pembagian dilakukan dengan dasar penjumlahan. Sehingga sirkuit elektronik di ALU yang digunakan untuk melaksanakan operasi aritmatika ini disebutadder. ALU melakukan operasi arithmatika dengan dasar pertambahan, sedang operasi arithmatika yang lainnya, seperti pengurangan, perkalian, dan pembagian dilakukan dengan dasar penjumlahan. sehingga sirkuit elektronik di ALU yang digunakan untuk melaksanakan operasi arithmatika ini disebutadder. Tugas lalin dari ALU adalah melakukan keputusan dari operasi logika sesuai dengan instruksi program. Operasi logika (logical operation) meliputi perbandingan dua buah elemen logika dengan menggunakan operator logika, yaitu:
  • sama dengan (=)
  • tidak sama dengan (<>)
  • kurang dari (<)
  • kurang atau sama dengan dari (<=)
  • lebih besar dari (>)
  • lebih besar atau sama dengan dari (>=)


b.    Unit Kontrol/Control Unit (CU)
Unit kontrol mampu mengatur jalannya program. Komponen ini sudah pasti terdapat dalam semua CPU. CPU bertugas mengontrol komputer sehingga terjadi sinkronisasi kerja antarkomponen dalam menjalankan fungsi-fungsi operasinya. termasuk dalam tanggung jawab unit kontrol adalah mengambil intruksi-intruksi dari memori utama dan menentukan jenis instruksi tersebut. Bila ada instruksi untuk perhitungan aritmatika atau perbandingan logika, maka unit kendali akan mengirim instruksi tersebut ke ALU. Hasil dari pengolahan data dibawa oleh unit kendali ke memori utama lagi untuk disimpan, dan pada saatnya akan disajikan ke alat output. Dengan demikian tugas dari unit kendali ini adalah:
  • Mengatur dan mengendalikan alat-alat masukan (input) dan keluaran (output).
  • Mengambil instruksi-instruksi dari memori utama.
  • Mengambil data dari memori utama (jika diperlukan) untuk diproses.
  • Mengirim instruksi ke ALU bila ada perhitungan aritmatika atau perbandingan logika serta mengawasi kerja dari ALU.
  • Menyimpan hasil proses ke memori utama.
3.  Input
device
merupakan suatu unit masukan yang berfungsi sebagai  media untuk memasukkan data dari luar ke dalam suatu memori dan prosesor untuk diolah guna menghailkan informasi yang diperlukan. Data yang dimasukkan ke dalam sistem komputer dapat berbentuk signal input dan maintenance input.
4. Output Device
merupakan perangkat komputer yang digunakan untuk menghasilkan keluaran. Contohnya;printer, speaker, plotter, monitor, dll. Proses kerjanya ialah diawali memasukkan data dari perangkat input, lalu data tersebut diolah sedemikian rupa oleh CPU sesuai yang kita inginkan dan data yang telah diolah tadi disimpan dalam memori komputer atau disk.
Keuntungan model arsitektur Von Neumann :
  • Fleksibilitas pengalamatan program dan data.
  • Program selalu ada di ROM dan data selalu ada di RAM.
  • Arsitektur Von Neumann memungkinkan prosesor untuk menjalankan program yang ada di dalam  memori data (RAM).
Kelemahan model arsitektur Von Neumann :
  • Bus tunggalnya itu sendiri. Sehingga instruksi untuk mengakses program dan data harus dijalankan secara sekuensial dan tidak bisa dilakukan overlaping untuk menjalankan dua instruksi yang berurutan.
  • Bandwidth program harus sama dengan bandwidth data. Jika memori data adalah 8 bits maka program juga harus 8 bits.
  • Prosesor Von Neumann membutuhkan jumlah clock CPI (Clock per Instruction) yang relatif lebih banyakk sehingga eksekusi instruksi dapat menjadi relatif lebih lama.
Arsitektur komputer Havard
Arsitektur Havard manggunakan memori terpisah untuk program dan data dengan alamat dan bus data yang berdiri sendiri. Karena dua perbedaan aliran data dan alamat, maka tidak diperlukan multiplexing alamat dan bus data. Arsitektur ini tidak hanya didukung dengan bus paralel untuk alamat dan data, tetapi juga menyediakan organisasi internal yang  berbeda sedemikian rupa instruksi dapat diambil dan dikodekan ketika dan data, tetapi juga menyediakan organisasi internal yang  berbeda sedemikian rupa instruksi dapat lebih lanjut lagi, bus data bisa saja memiliki ukuran yang berbeda  dari bus alamat. Hal ini memungkinkan pengoptimalan bus data dan bus alamat dalam pengeksekusian instruksi yang cepat. Diambil dan dikodekan ketika berbagai data sedang diambil dan dioperasikan. Sebagai contoh, mikrokontroler Intel keluarga MCS-51 menggunakan arsitektur Havard karena ada perbedaan kapasitas memori untuk program dan data, dan bus terpisah (internal) untuk alamat dan data.  Begitu juga dengan keluarga PIC dari Microchip yang menggunakan arsitektur Havard.
Diagram arsitektur komputer Havard.




                                     
Kelebihan arsitektur komputer model Havard :
  • Bandwidth program tidak mesti sama dengan bandwidth data.
  • opcode dan operand dapat dijadikan dalam satu word instruksi saja.
  • instruksi dapat dilakukan dengan lebih singkat dan cepat.
  • memori program dan data yang terpisah,  maka kavling total memori program dan data dapat menjadi lebih banyak.


Kekurangan arsitektur kmputer model havard :
  • arsitektur Harvard tidak memungkinkan untuk menempatkan data pada ROM.
  • arsitektur in tidak memungkinkan untuk mengakses data yang ada di ROM.


CISC ( Complex Instruction Set Computing )
Complex Instruction Set Computing (CISC) atau kumpulan instruksi komputasi kompleks. Adalah suatu arsitektur komputer dimana setiap instruksi akan menjalankan beberapa operasi tingkat rendah, seperti pengambilan dari memori (load), operasi aritmatika, dan penyimpanan ke dalam memori (store) yang saling bekerja sama.
Tujuan utama dari arsitektur CISC adalah melaksanakan suatu instruksi cukup dengan beberapa baris bahasa mesin yang relatif pendek sehingga implikasinya hanya sedikit saja RAM yang digunakan untuk menyimpan instruksi-instruksi tersebut. Arsitektur CISC menekankan pada perangkat keras karena filosofi dari arsitektur CISC yaitu bagaimana memindahkan kerumitan perangkat lunak ke dalam perangkat keras.
RISC (Reduced Instruction Set Computer)
RISC singkatan dari Reduced Instruction Set Computer. Merupakan bagian dari arsitektur mikroprosessor, berbentuk kecil dan berfungsi untuk negeset istruksi dalam komunikasi diantara arsitektur yang lainnya.
Sejarah RISC
Proyek RISC pertama dibuat oleh IBM, stanford dan UC –Berkeley pada akhir tahun 70 dan awal tahun 80an. IBM 801, Stanford MIPS, dan Barkeley RISC 1 dan 2 dibuat dengan konsep yang sama sehingga dikenal sebagai RISC. RISC mempunyai karakteristik :
  • one cycle execution time : satu putaran eksekusi. Prosessor RISC mempunyai CPI (clock per instruction) atau waktu per instruksi untuk setiap putaran. Hal ini dimaksud untuk mengoptimalkan setiap instruksi pada CPU.
  • pipelining:adalah sebuah teknik yang memungkinkan dapat melakukan eksekusi secara simultan.Sehingga proses instruksi lebih efisien.
  • large number of registers: Jumlah register yang sangat banyak. RISC di Desain dimaksudkan untuk dapat menampung jumlah register yang sangat banyak untuk mengantisipasi agar tidak terjadi interaksi yang berlebih dengan memory.


Perbedaan CISC dan RISC


CISC
RISC
Penekanan pada
perangkat keras
Penekanan pada
perangkat lunak
Termasuk instruksi
kompleks multi-clock
Single-clock, hanya
sejumlah kecil instruksi
Memori-ke-memori:
“LOAD” dan “STORE”
saling bekerjasama
Register ke register:
“LOAD” dan “STORE”
adalah instruksi2 terpisah
Ukuran kode kecil,
kecepatan rendah
Ukuran kode besar,
kecepatan (relatif) tinggi
Transistor digunakan untuk
menyimpan instruksi2
kompleks
Transistor banyak dipakai
untuk register memori

Sejarah Singkat ARM Mikroprosesor
ARM adalah prosesor dengan arsitektur set instruksi 32­bit RISC (Reduced Instruction Set Computer) yang dikembangkan oleh ARM Holdings. ARM merupakan singkatan dari Advanced RISC Machine (sebelumnya lebih dikenal dengan kepanjangan Acorn RISC Machine). Pada awalnya ARM prosesor dikembangkan untuk PC (Personal Computer) oleh Acorn Computers, sebelum dominasi Intel x86 prosesor­ Microsoft di IBM PC kompatibel menyebabkan Acorn Computers bangkrut.
Setelah Acorn Computers bangkrut, Apple Computers (sekarang Apple
Inc
) dan VLSI Technology
Inc
membeli kekayaan intelektual Acorn Computer, dan mendirikan ARM Ltd. ARM Ltd kemudian melanjutkan proyek Acorn Computer untuk mengembangkan prosesor 32­bit dengan arsitektur RISC yang sederhana dan hemat energi.
Prosesor yang dikembangkan ARM Ltd ternyata tidak diminati oleh kalangan produsen PC, dengan alasan tidak kompatibel dengan arsitektur Intel x86. ARM Ltd kemudian memutuskan untuk tidak memproduksi ARM prosesor, tetapi melisensikan desain prosesor tersebut untuk digabungkan dengan ASIC (Application Specific IC) yang membutuhkan kontroler embedded (contoh: kontroler printer, kontroler mesin cuci, kontroler video dekoder, kontroler ethernet hub/router, dan sebagainya).
Saat ini, selain digunakan untuk ASIC, ARM prosesor juga diproduksi oleh berbagai perusahaan semikonduktor sebagai mikroprosesor terpisah (sebelumnya ARM prosesor selalu di­embeddedkan dengan ASIC) maupun mikrokontroler (dengan pengurangan berbagai fitur yang diperlukan mikroprosesor).
Perusahaan yang dulu ataupun saat ini menggunakan lisensi ARM prosesor meliputi Alcatel­Lucent, Apple Inc., Atmel, Broadcom, Cirrus Logic, Digital Equipment Corporation (DEC), Freescale, Intel (melalui akuisisi DEC), LG, Marvell Technology Group, Microsoft, NEC, Nuvoton, Nvidia, NXP (dulu Philips), Oki, Qualcomm,
Samsung
, Sharp, STMicroelectronics, Symbios Logic, Texas Instruments, VLSI Technology, Yamaha and ZiiLABS.
Berbagai macam kontroler berbasis ARM yang terkenal meliputi DEC StrongARM (digunakan Intel untuk prosesor PDA), Marvell Xscale (desain Xscale dibeli Marvell dari Intel), Nintendo (untuk prosesor Gameboy, DSi, dan 3DS), Nvidia Tegra, ST­Ericsson Nomadik, Qualcomm Snapdragon, Texas Instruments OMAP product line, Samsung Hummingbird and Apple A4.
 

Keluarga ARM MikroprosesorARM mempunyai beberapa keluarga untuk menjangkau berbagai aplikasi.
ARM Klasik (Classic ARM Processors)
ARM klasik adalah keluarga ARM prosesor yang pertama kali dirilis oleh ARM Ltd (sekarang ARM Holdings). Prosesor ARM klasik ideal untuk pengguna yang ingin menggunakan teknologi telah teruji di pasar. Prosesor­prosesor ini telah digunakan untuk berbagai macam produk elektronik selama bertahun­-tahun. Desainer produk elektronik yang memilih prosesor­prosesor ini dijamin mempunyai dukungan ekosistem dan sumber daya yang luas, tingkat kesulitan integrasi yang minimum, dan menurunkan waktu desain.
ARM Cortex Prosesor Embedded (ARM Cortex Embedded Processors)
Prosesor­prosesor di keluarga seri Cortex­M telah dikembangkan khusus untuk domain mikrokontroler, dimana permintaan untuk kecepatan, determinasi waktu proses, dan manajemen interrupt bersama dengan jumlah gate silikon minimum (luas silikon yang minimum menentukan harga akhir prosesor) dan konsumsi daya yang minimum sangat diminati. Contoh aplikasi prosesor Cortex­M adalah mikrokontroller dan sensor cerdas.
Prosesor­-prosesor di keluarga seri Cortex­R, sebaliknya, dikembangkan khusus untuk keperluan real­time yang mendalam, dimana kebutuhan konsumsi daya minimum dan sifat interrupt yang terprediksi diimbangi dengan performa yang luar biasa dan kompatibilitas yang kuat dengan platform yang telah ada. Contoh aplikasi prosesor Cortex­R adalah ABS (Automotive Braking Systems), kontroler elektronik roda gigi, hidrolik, dan mesin otomotif.
ARM Cortex Prosesor Aplikasi (ARM Cortex Application Processors)
Prosesor­prosesor di keluarga prosesor aplikasi dikembangkan untuk aplikasi yang membutuhkan daya komputasi yang tinggi (frekuensi prosesing rata­rata 2GHz), seperti netbook, mobile internet devices, smartphone, dan lain-­lain.
ARM Cortex­M0
ARM Cortex­M0 adalah prosesor dari keluarga ARM Cortex prosesor embedded untuk menggantikan aplikasi mikrokontroler 8­/16­bit. Keunggulan ARM Cortex­M0 dibandingkan mikrokontroler 8­/16­bit terletak pada:
  • Kemampuan komputasi yang lebih tinggi untuk frekuensi kerja yang sama
  • Konsumsi daya yang lebih kecil atau sama
  • Jumlah pin yang sedikit (kurang dari 50­pin, tidak memerlukan multi­layer PCB, luas PCB yang dibutuhkan kecil, tidak membutuhkan keahlian khusus untuk memasang prosesor di board), tidak seperti prosesor 32­bit lainnya (butuh setidaknya 100­pin, multi­layer PCB, dan mesin X­Ray / oven)
  • Harga yang lebih murah atau sama
  • Kompatibel dengan ARM Cortex­M lain (ARM Cortex­M3, ARM Cortex­M4). Aplikasi yang dikompile untuk ARM Cortex­M0 bisa dijalankan di ARM Cortex­M lainnya. Hal ini berguna untuk upgrade hardware, tanpa membuang software yang sudah dikerjakan.
ARM Cortex­M0 Peripheral
ARM Cortex­M0 mempunyai peripheral­peripheral yang terintegrasi dengan prosesor. Peripheral­peripheral tersebut merupakan bagian dari desain ARM Cortex­M0. Karena itu, peripheral­peripheral tersebut terdapat di semua mikroprosesor yang berbasis ARM Cortex­M0, walaupun dibuat oleh manufaktur yang berbeda. Selain itu, peripheral­peripheral yang terdapat di ARM Cortex­M0, juga terdapat di prosesor ARM Cortex­M yang lain (ARM Cortex­M1, ARM Cortex­M3, ARM Cortex­M4), sehingga semua prosesor di
keluarga ARM Cortex­M kompatibel satu sama lainnya. Peripheral­peripheral tersebut antara lain:
Nested Vectored Interrupt Controller (NVIC )
NVIC adalah peripheral yang mengatur interrupt ARM Cortex­M (ARM Cortex­M0, ARM Cortex­M1, ARM Cortex­M3, ARM Cortex­M4). NVIC mengatur prioritas interrupt, mengaktifkan / menon­aktifkan interrupt, menyimpan isi register­register ARM Cortex­M ke memori stack ketika prosesor memasuki interrupt handler, dan mengembalikan isi register­register ARM Cortex­M dari memori stack ketika prosesor keluar dari interrupt handler.
System Control Block (SCB)
SCB adalah peripheral yang digunakan untuk mengatur mode prosesor. SCB menyediakan berbagai info untuk program pengguna (seperti CPU ID, konfigurasi memori big­/little­ endian, nomor interrupt yang saat ini ditangani, dan sebagainya)
System Timer (SysTick)Pada seri ARM klasik, prosesor­prosesor ARM tidak dilengkapi dengan Timer, sehingga tiap manufaktur melengkapi prosesor tersebut dengan peripheral Timer milik mereka sendiri. Akibatnya, terdapat isu kompatibilitas jika pengguna ingin berpindah dari prosesor ARM dari manufaktur yang satu ke manufaktur lainnya (Contoh: pengguna yang menggunakan peripheral Timer di ARM7TDMI buatan Atmel tidak bisa menggunakan ARM7TDMI buatan NXP tanpa mengubah kode program terlebih dulu, walaupun keduanya berbasis prosesor yang sama, karena Timer milik Atmel dan NXP berbeda).
Pada seri ARM Cortex­M (ARM Cortex­M0, ARM Cortex­M1, ARM Cortex­M3, ARM Cortex­M4), tiap prosesor dilengkapi dengan peripheral Timer, sehingga pengguna yang ingin memiliki kebebasan memilih manufaktur semikonduktor dapat berpindah ke manufaktur lain tanpa harus mengubah program mereka.
ARM Holdings sendiri menyarankan agar SysTick digunakan untuk Timer RTOS, sehingga RTOS tersebut (beserta aplikasinya) dapat dipindahkan dari prosesor satu ke prosesor lainnya (Contoh: dari ARM Cortex­M0 ke ARM Cortex­M3) ataupun dari manufaktur satu ke manufaktur lainnya (Contoh: dari STMicroelectronics ke NXP) tanpa perubahan apa pun di kode program.
Wake­up Interrupt Controller (WIC)
WIC adalah peripheral tambahan di ARM Cortex­M untuk mengaktifkan prosesor yang sedang dalam mode penghematan energi (sleep, deep sleep, dan sebagainya). WIC dibutuhkan untuk mengurangi konsumsi daya prosesor, karena mampu mengaktifkan prosesor tanpa menggunakan clock. WIC merupakan peripheral tambahan untuk membantu kerja NVIC.
Ketika prosesor dalam mode penghematan energi, WIC akan mendeteksi event yang digunakan untuk mengaktifkan prosesor. Ketika event tersebut terdeteksi, WIC akan mengaktifkan prosesor dan NVIC (keluar dari power saving mode), dan menyerahkan tugas ke NVIC untuk memproses interrupt tersebut (jika event tersebut berupa external interrupt).
Embedded Debug CoreDebug core di prosesor seri ARM Cortex­M memungkinkan user untuk men­debug program tanpa harus melepas prosesor dari PCB. Prosesor tanpa debug core (contoh Intel 8051) memerlukan emulator khusus untuk mendebug program (prosesor harus dilepas dari PCB, kemudian kabel­kabel dari emulator disolder ke PCB, di footprint prosesor).
Dengan debug core, pengembang aplikasi ARM Cortex­M cukup menghubungkan tiga pin (SWDIO, SWDCLK, dan GND) prosesor ARM Cortex­M ke JTAG eksternal (JTAG berguna untuk menjembatani program di PC dengan prosesor) tanpa harus melepas prosesor ARM Cortex­M dari PCB.



Kompatibilitas Set Instruksi ARM Cortex­M0
Set instruksi yang digunakan oleh ARM Cortex­M0 dinamakan set instruksi Thumb. Set instruksi ARM Cortex­M0 adalah subset dari set instruksi ARM Cortex­M yang lain, sehingga program yang dikompile untuk ARM Cortex­M0 kompatibel dengan prosesor ARM Cortex­M yang lain.

Selain itu, ARM Cortex­M0 juga kompatibel dengan set instruksi prosesor ARM dari seri klasik dan Cortex­A (ARM Cortex Application Processor).
Kesimpulan
Keserdehanaan, kompatibilitas, dan harga ARM Cortex­M0 membuat prosesor ini sebagai prosesor yang tepat untuk:
  • Migrasi aplikasi dari prosesor 8­/16­bit ke 32­bit
  • Prosesor entry level untuk aplikasi yang memerlukan kompatibilitas antara produk entry level sampai produk yang rumit, dengan satu arsitektur.
Revolusi sistem operasi
Microrost Windows atau biasa kita sapa dengan sebutan Windows adalah Sistem Operasi yang dikembangkan oleh Microsoft Corporation yang menggunakan antarmuka dengan berbasikan GUI (Graphical User Interface) atau tampilan antarmuka bergrafis.
Awalnya Windows bermula dari Ms-Dos (Microsoft Disk Operating System) yaitu sebuah Sistem Operasi yang berbasiskan teks dan Command-Line interpreter.
Windows Versi pertama, Windows Graphic Environmnet 1.0 merupakan perangkat lunak yang bekerja atas arsitekstur 16-Bit dan bukan merupakan Sistem Operasi dan berjalan atas MS-DOS, sehingga untuk menjalankannya membutuhkan MS-DOS. MS-DOS sendiri sebenarnya dibuat oleh perusahaan pembuat komputer Seattle Computer Products dan barulah kemudian direkrut oleh Microsoft yang selanjutnya dibeli lisensinya.
Kemudian berkembang menjadi Windows 1.0 versi pertama Sistem Operasi dalam dunia Sistem Operasi yang berbasiskan GUI (Graphical User Interface) dan mendukung Multi-Tasking atau dapat mengerjakan banyak pekerjaan secara simultan. Setelah itu Windows 1.0 berkembang menjadi Windows 2.0, Windows 2.0 ini berbasis GUI dan mendukung penggunaan VGA (Video GraphicsArray) dan juga mendukung Multi-Tasking. Windows 2.0 juga support terhadap penggunaan Processor Intel 80286 dimana Processor Intel 80286 adalah Processor pertama dengan kemampuan untuk memproteksi area memory.
Kemudian dilanjutkan dengan generasi Windows 3.0 dimana Windows 3.0 memiliki kemampuan yang sama dengan Windows sebelumnya dan ditambah dukungan kartu grafis SVGA atau XGA dan juga icon yang lebih baik. Dalam era tersebut, Microsoft juga menyediakan SDK (Software Development kit) sehingga para developer piranti lunak dapat mengembangkan aplikasi/programnya agar mampu berjalan di Windows 3.0 ini. Windows 3.0 juga memperkenalkan adanya Virtual Device Driver (VXD) dimana dapat berguna untuk meminimalisasi ketergantungan pada setiap driver pada perangkat keras tertentu. Windows 3.0 kemudian berevolusi menjadi Windows 3.1 yang sudah diperkenalkan dengan fitur Multimedia dan True Type Font selain itu juga memudahkan End-User karena adanya fitur Drag and Drop dan akhirnya Windows versi 3 ini berkembang menjadi Sistem Operasi yang sudah mengenal NetWorking (Windows 3.11).
Setelah berkembang cukup lama akhirnya Microsoft memperkenalkan Sistem Operasi hibrida 16-Bit/32-Bit yang dikenal dengan nama Windows 95. Banyak perubahan dari Windows versi sebelumnya, yaitu : Windows 95 memiliki GUI yang lebih menarik dan atraktif, mendukung Plug and Play, mendukung penamaan yang panjang, memiliki beberapa fasilitas seperti : Browser yang terintegrasi dan Windows Explorer untuk menjelajah Windows. Selain itu juga Windows 95 memiliki fitur untuk memanajemen daya (APM) dan diperkenalkannya juga Client-Server.
Generasi penerus dari Windows 95 adalah Windows 98 dimana Windows 98 sudah mendukung VGA berbasis AGP, serta mendukung media penyimpanan ringkas seperti USB, diperkenalkannya NAT untuk berbagi koneksi Internet dan digantikannya Virtual Device Driver dengan Windows Driver Model. Ada juga beberapa fitur tambahan berupa aplikasi Microsoft Office dan Internet Explorer versi 5. Windows 98 juga sudah memiliki kemampuan-kemampuan untuk memainkan Game dan menjalankan aplikasi Multimedia.
Perkembangan selanjutnya adalah Windows ME, tidak ada yang spesial dari Windows ME selain transisi dukungan grafis dari 16-Bit ke 32-Bit dan pada era Windows ME sudah banyak pengguna rumahan yang memakainya. Windows ME pun akhrinya digantikan dengan Windows NT yang sudah mendukung arsitekstur x86 (80×86) , Intel IA64 dan AMD64 (x64) serta mendukung grafis 32-Bit. Windows NT sebenarnya dibangun dari pengembangan IBM OS/2 dan Windows NT juga banyak digunakan dalam jaringan komputer. Windows NT juga memperkenalkan File System NTFS yang lebih baik dari FAT maupun FAT-32. 

Selanjutnya Windows NT berkembang menjadi Windows 2000 banyak fitur tambahan diantaranya : Active Directory, Image Preview, Browser Internet Explorer v6, DirectX dan Open GL, Plug and Play dan Windows Driver Model yang lebih baik performanya dibanding sebelumnya. Setelah generasi Windows NT munculah Windows XP yang menawarkan banyak perubahan, mempunyai banyak fitur dan performa yang semakin mengingkat. Bisa dikatakan Windows XP merupakan Windows yang paling laris dan digandrungi oleh pengguna PC maupun perangkat PC bergerak (Mobile). Seiring dengan kebutuhan akan networking maka Microsoft Corporation mengeluarkan Sistem Operasi yang berkonsentrasi pada jaringan, yaitu : Windows Server 2003. Bisa dibilang Windows Server 2003 adalah reinkarnasi dari Windows NT.



Sumber :

Senin, 22 September 2014

Control Memory

     Memori adalah perangkat keras (Hardware) yang berfungsi mengolah data dan instruksi. Semakin besar memori yang disediakan, semakin banyak data maupun intruksi yang dapat diolahnya.  Memori juga berfungsi sebagai Media penyimpanan data. Pengertian menurut istilah memori biasanya merujuk pada media atau tempat untuk menyimpan data yang dapat dikatakan bahwa memori merupakan perangkat keras yang khas digunakan untuk menyimpan data atau informasi dan dapat dibaca atau diambil kembali saat diperlukan.

  1. A.  Bagian-Bagian Processor dan Memori
i.   Bagian-bagian dari Processor
  1. Aritcmatics Logical Unit (ALU)
Komponen ini berfungsi sebagai tempat memproses data dengan cara memanipulasi informasi dan mengevaluasi hasilnya. ALU dapat melakukan operasi-operasi tertentu  misalnya penjumlahan, perkalian, pengurangan, dan lainnya.
2.   Control Unit (CU)
Control Unit atau Unit Kendali, mempunyai tugas utama untuk mengendalikan operasi dalam CPU dan juga mengontrol komputer secara keseluruhan untuk menciptakan sebuah sinkronisasi kerja antar komponen dalam melakukan fungsinya masing-masing. Di samping itu, control unit juga bertugas untuk mengambil instruksi-instruksi dari memori utama dan menentukan jenis instruksi tersebut.
3.   Register (Memory Unit)
Register merupakan media penyimpanan internal CPU yang digunakan saat pengolahan data. Registers merupakan media penyimpanan yang bersifat sementara, artinya data hanya akan berada dalam registers saat data tersebut dibutuhkan selama komputer masih hidup, ketika suatu data tidak diperlukan lagi maka ia tidak berhak lagi berada di dalam registers, dan ketika komputer dimatikan maka semua data yang berada di dalamnya akan hilang.
4.   CPU Interconections
CPU Interconnections merupakan sistem koneksi dan bus yang menghubungkan komponen internal CPU dengan bus-bus eksternal CPU. Komponen internal CPU diantaranya Arithmetic and Logic Unit (ALU), Control Unit, Registers, dan CPU Interconnection. Sedangkan komponen eksternal CPU diantaranya sistem memori utama, sistem masukan/keluaran (input/output), dan sistem-sistem lainnya.
ii.            Bagian-bagian Memori
Memori merupakan media penyimpanan data pada komputer, yang mana memori ini dibagi menjadi 2 jenis yaitu :
A.   Memori Internal
Memori jenis ini dapat diakses secara langsung oleh processor. Memori internal memiliki fungsi sebagai pengingat. Dalam hal ini yang disimpan di dalam memori utama dapat berupa data atau program. Secara lebih tinci, fungsi dari memori utama adalah:
  1. Menyimpan data yang berasal dari peranti masukan sampai data dikirim ke ALU (Arithmetic and Logic Unit) untuk diproses,
  2. Menyimpan data hasil pemrosesan ALU sebelum dikirimkan ke peranti keluaran,
  3. Menampung program/ instruksi yang berasal dari peranti masukan atau dari peranti pengingat sekunder.
Memori biasa dibedakan menjadi dua macam: ROM (Read Only Memory) dan RAM (Random Acces Memory). Selain itu, terdapat pula memori yang disebut Cache Memory.
ROM (Read Only Memory)
ROM adalah Memori yang hanya dapat di baca, tidak dapat di hapus dan sudah diisi oleh pabrik pembuat komputer (Tidak bisa di setting kembali). Perintah pada ROM sebagian akan di pindahkan ke RAM. Perintah yang ada di ROM antara lain:
  1. Perintah untuk membaca Sistem Operasi dari disk.
  2. Perintah untuk mengecek semua peralatan yang ada di Unit Sistem.
  3. Perintah untuk menampilkan pesan di layar.

Perkembangan ROM  (Read Only Memory)
a)       PROM (Programble ROM) : ROM yang bisa di program kembali dengan catatan hanya bisa di program 1 kali.
b)       RPROM (Re-Programble ROM) : ROM yang bisa di program ulang sesuai dengan yang kita inginkan.
c)       EPROM (Eraseble Programble ROM) : ROM yang dapat di hapus dan di program kembali tetapi cara penghapusannya dengan menggunakan Sinar Ultraviolet.
d)       EEPROM (Electrically Eraseble Programble ROM) : ROM yang bisa di program dengan Teknik Elektronik.
            RAM (Random Acces  Memory )
RAM adalah memory tempat penyimpanan sementara pada saat komputer dijalankan dan dapat diakses secara acak atau random. Fungsi dari RAM adalah mempercepat pemprosesan data pada komputer. Semakin besar RAM yang dimiliki, semakin cepatlah komputer. Berikut adalah jenis-jenis dari RAM.
  1. DRAM (Dynamic RAM) adalah jenis RAM yang secara berkala harus disegarkan oleh CPU agar data yang terkandung didalamnya tidak hilang.
  2. SDRAM (Sychronous Dynamic RAM) adalah jenis RAM yang merupakan kelanjutan dari DRAM namun telah disinkronisasi oleh clock sistem dan memiliki kecepatan lebih tinggi daripada DRAM. Cocok untuk sistem dengan bus yang memiliki kecepatan sampai 100 MHz.
  3. RDRAM (Rambus Dynamic RAM) adalah jenis memory yang lebih cepat dan lebih mahal dari pada SDRAM. Memory ini bisa digunakan pada sistem yang menggunakan Pentium 4.
  4. SRAM (Static RAM) adalah jenis memori yang tidak memerlukan penyegaran oleh CPU agar data yang terdapat di dalamnya tetap tersimpan dengan baik. RAM jenis ini memiliki kecepatan lebih tinggi daripada DRAM. SDRAM.
  5. EDO RAM (Extended Data Out RAM) adalah jenis memori yang digunakan pada sistem yang menggunakan Pentium. Cocok untuk yang memiliki bus denagan kecepatan sampai 66 MHz.
B.   Memori Eksternal
Memori ini merupakan memori tambahan yang berfungsi untuk menyimpan data atau program. Memori eksternal biasanya lebih besar kapasitasnya dibandingkan dengan memori internal. Memori eksternal mempunyai konsep dasar sebagai berikut.
  1. Menyimpan data bersifat tetap (non volatile), baik pada saat komputer aktif atau tidak.
  2. Memori eksternal biasa disebut juga memori eksternal yaitu perangkat keras untuk melakukan operasi penulisan, pembacaan dan penyimpanan data, di luar memori utama.
  3. Memori eksternal mempunyai dua tujuan utama yaitu sebagai penyimpan permanen untuk membantu fungsi RAM dan yang untuk mendapatkan memori murah yang berkapasitas tinggi bagi penggunaan jangka panjang.

BERBAGAI JENIS MEMORY EKSTERNAL
  1. Berdasarkan Jenis Akses Data
Berdasarkan jenis aksesnya memori eksternal dikelompokkan menjadi dua jenis yaitu :
a. DASD (Direct Access Storage Device) di mana ia mempunyai akses langsung terhadap data. Contoh :
1)  Magnetik (floppy disk, hard disk).
2)  Removeable hard disk (Zip disk, Flash disk).
3)  Optical Disk.
b. SASD (Sequential Access Storage Device) : Akses data secara tidak langsung (berurutan), seperti pita magnetik.
2.   Berdasarkan Karakteristik Bahan
Berdasarkan karakteristik bahan pembuatannya, memori eksternal digolongkan menjadi beberapa kelompok sebagai berikut:
A.    Punched Card atau kartu berlubang
Merupakan kartu kecil berisi lubang-lubang yang menggambarkan berbagai instruksi atau data. Kartu ini dibaca melalui puch card reader yang sudah tidak digunakan lagi sejak tahun 1979.
B.     Magnetic disk
Magnetic Disk merupakan disk yang terbuat dari bahan yang bersifat magnetik, Contoh : floppy dan harddisk.
C.     Optical Disk
Optical disk terbuat dari bahan-bahan optik, seperti dari resin (polycarbonate) dan dilapisi permukaan yang sangat reflektif seperti alumunium. Contoh : CD dan DVD
D.     Magnetic Tape
Sedangkan magnetik tape, terbuat dari bahan yang bersifat magnetik tetapi berbentuk pita, seperti halnya pita kaset tape recorder.

      C.   Sejarah Perkembangan Processor dan Memori
i.    Sejarah perkembangan processor
1971 : 4004 Microprocessor
Pada tahun 1971 munculah microprocessor pertama Intel , microprocessor 4004 ini digunakan pada mesin kalkulator Busicom. Dengan penemuan ini maka terbukalah jalan untuk memasukkan kecerdasan buatan pada benda mati.
1972 : 8008 Microprocessor
Pada tahun 1972 munculah microprocessor 8008 yang berkekuatan 2 kali lipat dari pendahulunya yaitu 4004.
1974 : 8080 Microprocessor
Menjadi otak dari sebuah komputer yang bernama Altair, pada saat itu terjual sekitar sepuluh ribu dalam 1 bulan
1978 : 8086-8088 Microprocessor
Sebuah penjualan penting dalam divisi komputer terjadi pada produk untuk komputer pribadi buatan IBM yang memakai processor 8088 yang berhasil mendongkrak nama intel.
1982 : 286 Microprocessor
Intel 286 atau yang lebih dikenal dengan nama 80286 adalah sebuah processor yang pertama kali dapat mengenali dan menggunakan software yang digunakan untuk processor sebelumnya.
1985 : Intel386™ Microprocessor
Intel 386 adalah sebuah processor yang memiliki 275.000 transistor yang tertanam diprosessor tersebut yang jika dibandingkan dengan 4004 memiliki 100 kali lipat lebih banyak dibandingkan dengan 4004
1989 : Intel486™ DX CPU Microprocessor
Processor yang pertama kali memudahkan berbagai aplikasi yang tadinya harus mengetikkan command-command menjadi hanya sebuah klik saja, dan mempunyai fungsi komplek matematika sehingga memperkecil beban kerja pada processor.
1993 : Intel® Pentium® Processor
Processor generasi baru yang mampu menangani berbagai jenis data seperti suara, bunyi, tulisan tangan, dan foto.
1995 : Intel® Pentium® Pro Processor
Processor yang dirancang untuk digunakan pada aplikasi server dan workstation, yang dibuat untuk memproses data secara cepat, processor ini mempunyai 5,5 jt transistor yang tertanam.
1997 : Intel® Pentium® II Processor
Processor Pentium II merupakan processor yang menggabungkan Intel MMX yang dirancang secara khusus untuk mengolah data video, audio, dan grafik secara efisien. Terdapat 7.5 juta transistor terintegrasi di dalamnya sehingga dengan processor ini pengguna PC dapat mengolah berbagai data dan menggunakan internet dengan lebih baik.
1998 : Intel® Pentium II Xeon® Processor
Processor yang dibuat untuk kebutuhan pada aplikasi server. Intel saat itu ingin memenuhi strateginya yang ingin memberikan sebuah processor unik untuk sebuah pasar tertentu.
1999 : Intel® Celeron® Processor
Processor Intel Celeron merupakan processor yang dikeluarkan sebagai processor yang ditujukan untuk pengguna yang tidak terlalu membutuhkan kinerja processor yang lebih cepat bagi pengguna yang ingin membangun sebuah system computer dengan budget (harga) yang tidak terlalu besar. Processor Intel Celeron ini memiliki bentuk dan formfactor yang sama dengan processor Intel jenis Pentium, tetapi hanya dengan instruksi-instruksi yang lebih sedikit, L2 cache-nya lebih kecil, kecepatan (clock speed) yang lebih lambat, dan harga yang lebih murah daripada processor Intel jenis Pentium. Dengan keluarnya processor Celeron ini maka Intel kembali memberikan sebuah processor untuk sebuah pasaran tertentu.
1999 : Intel® Pentium® III Processor
Processor Pentium III merupakan processor yang diberi tambahan 70 instruksi baru yang secara dramatis memperkaya kemampuan pencitraan tingkat tinggi, tiga dimensi, audio streaming, dan aplikasi-aplikasi video serta pengenalan suara.
1999 : Intel® Pentium® III Xeon® Processor
Intel kembali merambah pasaran server dan workstation dengan mengeluarkan seri Xeon tetapi jenis Pentium III yang mempunyai 70 perintah SIMD. Keunggulan processor ini adalah ia dapat mempercepat pengolahan informasi dari system bus ke processor , yang juga mendongkrak performa secara signifikan. Processor ini juga dirancang untuk dipadukan dengan processor lain yang sejenis.
2000 : Intel® Pentium® 4 Processor
Processor Pentium IV merupakan produk Intel yang kecepatan prosesnya mampu menembus kecepatan hingga 3.06 GHz. Pertama kali keluar processor ini berkecepatan 1.5GHz dengan formafactor pin 423, setelah itu intel merubah formfactor processor Intel Pentium 4 menjadi pin 478 yang dimulai dari processor Intel Pentium 4 berkecepatan 1.3 GHz sampai yang terbaru yang saat ini mampu menembus kecepatannya hingga 3.4 GHz.
2001 : Intel® Xeon® Processor
Processor Intel Pentium 4 Xeon merupakan processor Intel Pentium 4 yang ditujukan khusus untuk berperan sebagai computer server. Processor ini memiliki jumlah pin lebih banyak dari processor Intel Pentium 4 serta dengan memory L2 cache yang lebih besar pula.
2001 : Intel® Itanium® Processor
Itanium adalah processor pertama berbasis 64 bit yang ditujukan bagi pemakain pada server dan workstation serta pemakai tertentu. Processor ini sudah dibuat dengan struktur yang benar-benar berbeda dari sebelumnya yang didasarkan pada desain dan teknologi Intel’s Explicitly Parallel Instruction Computing ( EPIC ).
2002 : Intel® Itanium® 2 Processor
Itanium 2 adalah generasi kedua dari keluarga Itanium
2003 : Intel® Pentium® M Processor
Chipset 855, dan Intel® PRO/WIRELESS 2100 adalah komponen dari Intel® Centrino™. Intel Centrino dibuat untuk memenuhi kebutuhan pasar akan keberadaan sebuah komputer yang mudah dibawa kemana-mana.
2004 : Intel Pentium M 735/745/755 processors
Dilengkapi dengan chipset 855 dengan fitur baru 2Mb L2 Cache 400MHz system bus dan kecocokan dengan soket processor dengan seri-seri Pentium M sebelumnya.
2004 : Intel E7520/E7320 Chipsets
7320/7520 dapat digunakan untuk dual processor dengan konfigurasi 800MHz FSB, DDR2 400 memory, and PCI Express peripheral interfaces.
2005 : Intel Pentium 4 Extreme Edition 3.73GHz
Sebuah processor yang ditujukan untuk pasar pengguna komputer yang menginginkan sesuatu yang lebih dari komputernya, processor ini menggunakan konfigurasi 3.73GHz frequency, 1.066GHz FSB, EM64T, 2MB L2 cache, dan HyperThreading.
2005 : Intel Pentium D 820/830/840
Processor berbasis 64 bit dan disebut dual core karena menggunakan 2 buah inti, dengan konfigurasi 1MB L2 cache pada tiap core, 800MHz FSB, dan bisa beroperasi pada frekuensi 2.8GHz, 3.0GHz, dan 3.2GHz. Pada processor jenis ini juga disertakan dukungan HyperThreading.
2006 : Intel Core 2 Quad Q6600
Processor untuk type desktop dan digunakan pada orang yang ingin kekuatan lebih dari komputer yang ia miliki memiliki 2 buah core dengan konfigurasi 2.4GHz dengan 8MB L2 cache (sampai dengan 4MB yang dapat diakses tiap sore), 1.06GHz Front-side bus, dan thermal design power ( TDP )
2006 : Intel Quad-core Xeon X3210/X3220
Processor yang digunakan untuk tipe server dan memiliki 2 buah core dengan masing-masing memiliki konfigurasi 2.13 dan 2.4GHz, berturut-turut , dengan 8MB L2 cache ( dapat mencapai 4MB yang diakses untuk tiap core ), 1.06GHz Front-side bus, dan thermal design power (TDP)
ii.Perkembangan Sejarah Memori
  1. DRAM. Muncul pada tahun 1970,IBM menciptakan sebuah memori yang dinamakan DRAM(Dynamic Random Access Memory) yang mempunyai frekuensi kerja yang bervariasi,yaitu antara 4,77MHz hingga 40MHz.
  2. FPM RAM. Muncul pada tahun 1987,RAM jenis FPM (Fast Page Mode) merupakan RAM paling kerap digunakan dalam system komputer pada masa itu,FPM bekerja pada rentang frekuensi 16MHz hingga 66MHz dengan access time sekitar 50ns.selain itu FPM mampu mengolah transfer data (bandwith) sebesar 188,71MB/detik, FPM juga dikenali sebagai DRAM (Dynamic Random Access Memory) saja,FPM menggunakan modul memori SIMM 30 pin & SIMM 72 pin.
  3. EDORAM. Muncul pada tahun 1995,Extended Data Output Dynamic Random Access Memory yang merupakan penyempurnaan dari FPM. EDORAM mempunyai access time sekitar 70ns hingga 50ns & bekerja pada frekuensi 33MHz hingga 75MHz.
  4. SDRAM. Muncul pada peralihan 1996-1997,Synchronous Dynamic Random Accsess Memory,lebih dikenal sebagai PC66 karena bekerja pada frekuensi bus 66MHz.,tegangan hanya 3,3volt, access time sebesar 10ns & mampu menghantarkan data dengan kecepatan maksimal 55MB/det.
  5. RDRAM. Muncul pada tahun 1999,yang menggunakan modul RIMM,transfer data secara serial pada data bus 16-bit,dengan kecepatan 16GB/det.
  6. SDRAM PC 133. Bekerja pada bus berfrekuensi 133MHz dengan access time sebesar 1,06GB/det.
  7. SDRAM PC 150. Pada tahun 2000 memori PC150 mempunyai accsess time 7ns & mampu mengalirkan data sebesar 1,28GB/det.
  8. DDR-SDRAM.  Pada tahun 2000 menggunakan sistem bus dengan frekuensi sebesar 100-133MHz.
  9. DDR2 SDRAM. Pada tahun 2004 memilki kelebihan High clock speed 400-800MHz,memiliki 1 keping 2 GB &dipasangkan pada single bank serta menggunakan teknologi koneksi Ball Grid Array (BGA).
  10. DDR3 2GB. Pada 2007, memiliki bandwith sampai dengan 1600MHz&mampu mentransfer data dengan clock efektif 800-1600MHz.

D.   Proses Kerja Processor dan Memori
Didalam spesifikasi-spesifikasi processor sering tertulis 2,2GHz, 2,4GHz, dan sebagainya. Hal itu menunjukan kinerja yang terjadi di dalam processor. Jika 1 Hz di dalam processor terjadi 1 putaran dalam 10 menit, maka 2,2GHz dapat melakukan 2,2 milyar putaran dalam 10 menit. Oleh karena itu di processor terdapat kipas yang membantu agar processor tidak terlalu panas.
Processor berfungsi seperti kalkulator, hanya saja dengan kemampuan pemrosesan data yang jauh lebih besar. Fungsi utamanya adalah melakukan operasi aritmatika dan logika terhadap data.
Data tersebut diambil dari memori atau diperoleh dari alat input yang dioperasikan oleh operator seperti papan ketik (keyboard), mouse dan lainnya. Kerja Processor ini dikontrol oleh sekumpulan instruksi software. Software tersebut diperoleh atau dibaca dari media penyimpan seperti harddisk, disket, CD, dan lainnya. Kemudian instruksi-instruksi tadi disimpan dalam RAM. Setiap instruksi diberi alamat unik yang disebut alamat memori. Untuk selanjutnya, Processor akan mengakses data-data yang ada pada RAM, dengan cara menentukan alamat data yang dikehendaki.
Processor dan RAM dihubungkan oleh unit yang disebut bus. Saat sebuah program dijalankan, data akan mengalir dari RAM melalui bus, menuju ke Processor. Di dalam Processor, data ini di-dekode, kemudian berjalan ke ALU yang bertugas melakukan kalkulasi dan perbandingan. Kadang-kadang data disimpan sementara di register agar dapat diambil kembali dengan cepat untuk diolah. Setelah selesai, hasil pemrosesannya mengalir kembali ke RAM atau ke media penyimpan. Apabila data hasil perosesan tadi akan diolah lagi, maka data tersebut akan disimpan dalam register. Demikian seterusnya.
BAB III
PENUTUP

Dari makalah ini dapat kita simpulkan  bahwa :
  1. Processor merupakan otak dari komputer karena processor merupakan pusat pelaksana keja komputer. Segala aktifitas yang dilakukan oleh sebuah komputer ditentukan pula oleh kualitas processornya. Processor sebenarnya adalah CPU. Processor terbagi menjadi 5 bagian yang memiliki peran masing-masing.
  2. Memori adalah merupakan media penyimpanan yang memiliki fungsi vital bagi sebuah computer untuk dapat beroperasi. Memori dibagi menjadi memori eksterbal dan memori internal.
  3. Hubungan antara Procesor dan memori adalah processor mengambil instruksi dari memori sesuai dengan yang ada pada program counter. Tugas sistem operasi adalah mengatur peletakan banyak proses pada suatu memori. Dari penjabaran diatas dapat disimpulkan bahwa tidak mungkin suatu perangkat komputer dapat beroprasi dengan optimal tanpa didukung oleh sebuah memory, padahal tempat instruksi-instruksi yang diperlukan oleh komputer untuk mengolah masukan menjadi keluaran tersebut terdapat (disimpan) di dalam memory.
Daftar Pustaka
Hermawan, Galih. 2008. Ilustrasi Processor dan Memori pada Komputer. http://galih-hermawan.blogspot.com. Diakses pada tanggal 28 Oktober 2012.
Siska. 2011. Perkembangan Prosessor Dan Memori Komputer. http://siska.blogstudent.mb.ipb.ac.id. Diakses pada tanggal 28 Oktober 2012.
Muhammad, Zamrud. 2012. Pengertian Dan Fungsi Memory. http://zamrudblog.blogspot.com. Diakses pada tanggal 28 Oktober 2012.
Naratoma University. 2011. Pengertian Dan Jenis Processor. http://fasilkom.narotama.ac.id. Diakses pada tanggal 28 Oktober 2012

Nesha Jelita

Blogger Widgets